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Abstract - The mapping or binding of IP addresses to 

hostnames became a major problem in networking systems. 

DNS Security is designed to provide security by combining 

the concept of both the Digital Signature and Asymmetric key 

(Public key) Cryptography. Here the Public key is sent 

instead of the Private key.  

The DNS security uses Message-Digest Algorithm to 

compress the Message (textfile) and PRNG(Pseudo Random 

Number Generator) Algorithm for generating Public and 

Private keys. 
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I. INTRODUCTION 

The Domain Name System (DNS) can be considered 

one of the most important components of the modern 

Internet. DNS provides a means to map IP addresses 

(random, hard-to-remember numbers) to names (easier to 

remember and disseminate). Without DNS, we would have 

to remember that www.amazon.com is actually the IP 

address 72.21.207.65, and that would be hard to change. 

DNS is really the most successful, largest distributed 

database. In recent years, however, a number of DNS 

exploits have been uncovered. These exploits affect the 

system in such a way that an end-user cannot be certain the 

mappings he is presented with are, in fact, legitimate. The 

DNS Security (DNSSEC) standard has been written in an 

attempt to mitigate some of the known security issues in the 

current DNS design used today. Finally, we will analyse the 

impacts of DNSSEC on embedded platforms and mobile 

networks.  

II. SCOPE 
The Domain Name System (DNS) has become a critical 

operational part of the Internet Infrastructure, yet it has no 

strong security mechanisms to assure Data Integrity or 

Authentication. Extensions to the DNS are described that 

provide these services to security-aware resolves are 

applications through the use of Cryptographic Digital 

Signatures. These Digital Signatures have included zones as 

resource records. 

The extensions also provide for the storage of Authenticated 

Public keys in the DNS. This storage of keys can support 

general Public key distribution services as well as DNS 

security. These stored keys enable security-aware resolvers 

to learn the authenticating key of zones, in addition to those 

for which they are initially configured. Keys associated with 

DNS names can be retrieved to support other protocols. In 

addition, the security extensions provide for the 

Authentication of DNS protocol transactions. 

DNS Security is designed to provide security by 

combining the concept of both the Digital Signature and 

Asymmetric key (Public key) Cryptography. Here the Public 

key is sent instead of the Private key. The DNS security uses 

Message-Digest Algorithm to compress the Message (text 

file) and PRNG(Pseudo Random Number Generator) 

Algorithm for generating Public and Private keys. The 

Message combines with the Private key to form a Signature 

using DSA Algorithm, which is sent along with the Public 

key. 

The receiver uses the Public key and DSA Algorithm to 

form a Signature. If the Signature matches with the Signature 

of the Message received, the Message is Decrypted and read 

else discarded. 

 

III. DOMAIN NAME SPACE (DNS) 

As a tree is traversed in an ascending manner (i.e., from 

the leaf nodes to the root), the nodes become increasingly 

less specific (i.e., the leftmost label is most specific, and the 

rightmost label is least specific). Typically in an FQDN, the 

leftmost label is the hostname, while the next label to the 

right is the local domain to which the host belongs. The local 

domain can be a subdomain of another domain. The name of 

the parent domain is then the next label to the right of the 

subdomain (i.e., local domain) name label, and so on, till the 

root of the tree is reached 

. 
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Fig. 3.1 Domain name space example 

The DNS is a hierarchical tree structure hoserootnodeis 

known as the root domain. A label in a DNS name directly 

corresponds with a node in the DNS tree structure. A label is 

an alphanumeric string that uniquely identifies that node 

from its brothers. Labels are connected together with a dot 

notation, ., and a DNS name containing multiple labels 

represents its path along the tree to the root. Labels are 

written from left to right. Only one zero-length label is 

allowed and is reserved for the root of the tree. This is 

commonly referred to as the root zone. Due to the root label 

being zero-length, all FQDNs end in a dot [RFC 1034]. 

When the DNS is used to map an IP address back into a 

hostname (i.e., inverse resolution), the DNS makes use of the 

same notion of labels from left to right (i.e., most specific to 

least specific) when writing the IP address. This is in contrast 

to the typical representation of an IP address whose dotted 

decimal notation from left to right is least specific to most 

specific. 

 
 

Fig. 3.2.  Example of inverse domains and the Domain Name Space 

 

To handle this, IP addresses in the DNS are typically 

represented in reverse order. IP addresses fall under a special 

DNS top-level domain (TLD), known as the in-and. Arpa 

domain. By doing this, using IP addresses to find DNS 

hostnames are handled just like DNS hostname lookups to 

find IP addresses. 

 

A. DNS Components 

The DNS has three major components, the database, the 

server, and the client [RFC 1034]. The database is a 

distributed database and is comprised of the Domain Name 

Space, which is essentially the DNS tree, and the Resource 

Records (RRs) that define the domain names within the 

Domain Name Space. The server is commonly referred to as 

a name server. Name servers are typically responsible for 

managing some portion of the Domain Name Space and for 

assisting clients in finding information within the DNS tree. 

Name servers are authoritative for the domains in which they 

are responsible. They can also serve as a delegation point to 

identify other name servers that have authority over sub-

domains within a given domain. 

 

B. DNS Transactions 

 DNS transactions occur continuously across the 

Internet. The two most common transactions are DNS zone 

transfers and DNS queries/responses. A DNS zone transfer 

occurs when the secondary server updates its copy of a zone 

for which it is authoritative. The secondary server makes use 

of the information it has on the zone, namely the serial 

number, and checks to see if the primary server has a more 

recent version. If it does, the secondary server retrieves a 

new copy of the zone.  

A DNS query is answered by a DNS response. Resolvers 

use a finite list of name servers, usually not more than three, 

to determine where to send queries. If the first name server in 

the list is available to answer the query, then the others in the 

list are never consulted. If it is unavailable, each name server 

in the list is consulted until one is found that can return an 

answer to the query. The name server that receives a query 

from a client can act on behalf of the client to resolve the 

query. Then the name server can query other name servers 

one at a time, with each server consulted being presumably 

closer to the answer. The name server that has the answer 

sends a response back to the original name server, which 

then can cache the response and send the answer back to the 

client. Once an answer is cached, a DNS server can use the 

cached information when responding to subsequent queries 

for the same DNS information. Caching makes the DNS 

more efficient, especially when under heavy load. This 

efficiency gain has its tradeoffs; the most notable is 

insecurity.  

 

IV. DNS SECURITY 
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A. Security Need  

As originally designed, DNS has no means of 

determining whether the domain name data comes from the 

authorized domain owner or has been forged. This weakness 

in security leaves the system to be vulnerable to a number of 

attacks, like DNS cache poisoning, DNS spoofing etc. Due to 

weak authentication between DNS servers exchanging 

updates, an attacker may predict a DNS message ID and 

manage to reply before the legitimate DNS server, thus 

inserting a malicious record into the DNS database. The 

exploit forces a compromised DNS server to send a request 

to an attacker's DNS server, which will supply the wrong 

host to IP mapping.  

 
 DNS Security Extensions (DNSSEC) is a set of IETF 

(Internet Engineering Task Force) standards that have been 

created to address the vulnerabilities in the DNS and to 

protect from online threats. The main purpose of DNSSEC is 

to basically increase Internet security as a whole by 

addressing and resolving DNS security weaknesses. 

Essentially, DNSSEC adds authentication feature to DNS 

that make the system more secure DNSSEC core elements 

were specified in the following three IETF Requests for 

Comments which have been published in March 2005:   RFC 

4033 - DNS Security Introduction and Requirements RFC 

4034 - Resource Records for the DNS Security Extensions 

RFC 4035 - Protocol Modifications for the DNS Security 

Extensions Existing proposals for securing DNS are mainly 

based on public-key cryptography. The public key 

algorithms used for authentication in DNSSEC are 

MD5/RSA (Rivest Shamir Adleman Algorithm) and DSA 

(Digital Signature Algorithm). Digital signatures generated 

with public-key algorithms have the advantage that anyone 

having the public key can verify them.  

The idea behind it is that every node in Domain Name 

Space has a Public Key, and each Message from DNS 

Servers is signed using Private Key. Since DNS is Public, 

Authenticated DNS root Public Keys are known to all, which 

are used to generate Certificates/Signatures to combine the 

identity information of Top Level Domain. So, in Domain 

Name Space, each parent signs the Public Keys of all its 

Children in the DNS tree. 

 

B. Securing DNS with ECC    
With technology growing faster, everyone accesses the 

Internet through mobile phones. Whether it is used to check 

Emails or visit any secure sites, ECC (Elliptic Curve 

Cryptography) can be implemented. ECC provides the same 

level of Security as RSA[5] with benefits of small key sizes, 

faster computation, and memory and energy savings[6]. 

Small Key Size and Faster Computation: The security level 

of 160-bit ECC and 1024- bit RSA is the same. RSA 

operations are based on modular exponentiations of large 

integers, and security is based on factoring these large 

integers. On the other hand, ECC operations are based on 

groups of points over elliptic curves and security is based on 

discrete logarithm problems (ECDLP). This allows ECC to 

have the same level of security with smaller key sizes and 

higher computational efficiency.   Memory and Energy 

savings: ECC requires less power for its functioning, so it is 

more suitable for low power applications such as handheld 

and mobile devices. On small processors, multiple precision 

multiplications of large integers (done in RSA) not only 

involves arithmetic operations but also a significant amount 

of data transport to and from memory due to limited registers 

space. While in ECC, the scalar multiplications involve 

additions with no intermediate results to be stored, thereby 

requiring less use of registers. So, ECC provides less 

memory space and also, the energy required to perform 

additions is much less than performing multiplications done 

in RSA. 

 
Table 4.1 ECDSA vs RSA 

 

 
 

                   V. SYSTEM ARCHITECTURE 
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VI. ECDSA IMPLEMENTATION 

The key parameters are taken as same as recommended 

by NIST, but we are introducing a change in the signing and 

verification process. 

 

A. Key Parameters  

Some predefined parameters for the ECDSA implementation 

used, as follows:  

1. Select a prime number (p) of large size.  

2. Choose constants (a and b) such that (4a3+27b2) modulo p 

is not equal to 0.  

3. Generate elliptic curve points Ep (a, b), where Ep (a, b) is 

a generalized term for elliptic curve points (x, y).  

4. Choose generator point (G) of order n, where an order is a 

number of points in the elliptic curve.  

5. Select d such that 1 < d < n-1. This is used as a private 

key. These parameters are recommended by NIST for federal 

government use and include elliptic curves of various bit 

lengths (e.g., 192, 224, 256, 384, 521 etc.)[8]. 

 6. Generate public key Q such that Q = d.G, where ‘.’ Is 

point multiplication for ECDSA and is represented as 

G+G+G……d times which can be calculated using elliptic 

curve arithmetic.  

 

B. Signature Generation  
1. Select a random number k to be used only once. That is, 

for every new signature generation of a message, a new k is 

selected, such that 1 < k < n-1.  

2. Generate (r, s) component of signature such that  

a. k.G =  (x, y) r = x modulo n if r = 0 then repeat 2 again 

b. Calculate hash of message (M) whose signature is to be 

generated, i.e., e = h (M). c. s = d(r*k – e)-1modulo n // 

(modified)  

 

C. Signature Verification  
1. Calculate u1 = e*r-1 modulo n // (modified)  

2. Calculate u2 = (r*s)-1 modulo n // (modified)  

3. Calculate T = u1.G + u2.Q = (x1, y1), where ‘.’ Is point 

multiplication and ‘+’ is point addition and can be calculated 

using elliptic curve arithmetic. 

 4. Calculate v = x1 modulo n  

 5. If v = r, a signature is valid.  

The above-proposed algorithm is a variant of the algorithms 

as described in, providing less complexity in signing. 

 

 

VII. CONCLUSION 

     The purpose of this work is to show the simulation of how 

this software system works, but with the ECDSA algorithm 

implemented in it. ECDSA is fast at verifying the signatures, 

uses a small key size as compared to RSA, and also provides 

the same level of security as given by RSA. ECC is a 

growing field of the future. So, this work involves DNS 

security using ECC. ECC being very secure, smaller key 

sizes, less in power and memory consumption gives better 

security to small portable devices.  
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